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Executive Summary 

This report leverages the modeling capabilities of the USAGE-Hwy model, a dynamic model of the U.S. 
economy, to simulate the macroeconomic impacts of automated driving systems (ADS) in long-haul 
trucking under a set of assumptions (described in Section 3, Data and Methods). In this report, ADS 
refers to SAE Level 4 and Level 5 automation which does not require a human driver onboard the 
vehicle.1 However, the timeline for adoption of ADS remains uncertain. Therefore, this analysis examines 
three scenarios: slow, medium, and fast adoption paths. The fast scenario is intentionally a very optimistic 
scenario in which 75 percent of new vehicle purchases involve ADS in 10 years of the technology 
becoming available. The medium and slow scenarios assume 48 percent and 19 percent of trucking firms 
will have begun adopting 10 years after the technology becomes available, respectively. Importantly, this 
research is the first that estimates not only the direct improvements to productivity in the trucking industry 
from ADS, but also the indirect impacts to other industries resulting from the central role transportation 
plays in the larger economy.  

Our model indicates that the productivity enhancements from the adoption of ADS in the long-haul 
trucking sector will increase GDP, capital, employment, wages, and welfare that can be monetized into 
billions of dollars. Additionally, our model concludes that these economic benefits can likely be reaped 
without mass lay-offs of long-haul truck drivers. Assuming the occupational turnover remains near today’s 
levels, employment levels in the long-haul trucking sector will necessarily fall due to automation, but will 
not force lay-offs in the slow and medium speed adoption scenarios. Only under the fast adoption 
scenario are lay-offs observed.  

Specifically, this analysis finds that SAE Level 4 and Level 5 automation of the long-haul trucking industry 
would do the following: 

• Produce welfare increases ranging from $35 per person in the U.S. per year under the slow 
adoption scenario to $69 per person per year under the fast adoption scenario.  

• Raise annual earnings for all U.S. workers by $203 per worker per year under the slow scenario 
and $267 per worker per year under the fast scenario. These benefits accrue to all workers due to 
economy-wide productivity improvements.   

• Increase total U.S. employment by 26,400 to 35,100 jobs per year on average during the analysis 
period, despite decreases in employment for long-haul truck drivers.  

• The lower employment levels for long-haul truck drivers can largely be offset with natural 
occupational turnover. However, lay-offs for long-haul truck drivers are anticipated in the fast 
adoption scenario. Those lay-offs occur only during a period of 5 years and the maximum lay-offs 
in a single year is 11,000, just 1.7 percent of the long-haul driver workforce. 

• Increase GDP by at least 0.3 percent by year 30 of the analysis period.  
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Chapter 1. Introduction 

The Intelligent Transportation Systems Joint Program Office (ITS JPO) facilitates multimodal automation 
research and collaboration in safety, infrastructure interoperability, and policy analysis. In support of that 
role, ITS JPO has partnered with the USDOT John A. Volpe National Transportation Systems Center and 
the Center of Policy Studies at Victoria University in Melbourne, Australia to produce this report 
investigating the macroeconomic impacts from automated driving systems (ADS) in the long-haul trucking 
industry. The report is provided to the public for informational purposes only, and does not represent an 
official viewpoint or policy of the United States Department of Transportation.  

Driving automation has the potential to significantly enhance the productivity of the trucking industry. 
Because of the central role trucking plays in the U.S. economy, such productivity enhancement would be 
expected to have ripple effects throughout the entire economy. The purpose of this research is to further 
our understanding of the possible magnitude of the economy-wide impacts from ADS in long-haul 
trucking. 

This analysis examines the long-haul segment of the trucking industry. Unlike the short-haul segment, the 
long-haul segment involves long periods of uninterrupted highway driving (which is a less-complex 
environment than surface streets) and long-haul drivers have fewer non-driving responsibilities than 
short-haul drivers. As a consequence, several previous studies assert that long-haul trucking appears to 
be a likely early candidate for deployment of ADS.2,3 Several companies, such as Embark, Kodiak, 
Plus.ai, TuSimple, and Waymo, are already using automated trucks to deliver goods to customers (albeit 
with safety drivers). Although the nascent industry has already seen turnover (Starsky Robotics, after 
failing to raise additional investment, announced in May 2020 that it had shut down all operations), 
competitors and industry analysts remain optimistic about automated trucking in general.4,5 Note that 
while advanced driver assistance systems (SAE Level 1 and 2) are available today on production 
vehicles, these are out of scope of the present study, as they always require an engaged human driver 
behind the wheel. 

This analysis incorporates estimates of expected capital cost savings, fuel cost savings, and safety 
improvements in addition to labor cost savings resultant from the removal of human drivers in the trucking 
industry.i These estimated cost savings are balanced against higher upfront costs for purchasing the 
technology.  

The selection of this industry segment for analysis does not constitute an endorsement or a prediction of 
its adoption. Many practical issues remain to be resolved in order for ADS to be widely deployed in long-
haul trucking, including technological maturation, negotiating the transition between human operators and 
the ADS (e.g., between long-haul segments and first-mile/last-mile segments of the trip), refueling 

                                                      

 

i Per the Federal Motor Carrier Safety Regulations (FMCSRs), a trained commercial driver must be 
behind the wheel at all times, regardless of any automated driving technologies available on the CMV, 
unless a petition for a waiver or exemption has been granted. 
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operations, securing loads, cybersecurity concerns related to software updates, and handling 
emergencies. 
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Chapter 2. Literature Review 

Several studies discuss the benefits that ADS would bring to private consumers, producers, and to 
society at large. These benefits include productivity enhancements, improved access to labor markets 
and shopping opportunities, travel time savings, reductions in fuel use (which produces improvements in 
the balance of trade, energy security, and environmental quality), reduced congestion, and safety 
improvements.6,7 Specific to commercial trucking, the ability to remove the driver from the truck 
represents a potential source of significant cost savings and a few studies note that improvements in 
productivity for the transportation system could have significant spill-over impacts to the rest of the 
economy.6,8  

A prominent historical example of the connection between transportation industries and the larger 
economy is the observation that investments made in the highway system lead to higher economic 
growth. Nadiri and Mamuneas find that highway capital investment provides productivity enhancements 
and cost-reductions to almost all industries, thus impacting demand for labor, capital, and intermediate 
goods, and providing a rate of return up to 50 to 60 percent.9,10 Similarly, Munnell and Cook estimate a 
production function that accounts for highway capital stock and find a 0.06 percentage point increase in 
GDP for each 1 percent increase in level of public highway capital stock, measured as the value of 
highway equipment and structures.11 

Computable General Equilibrium (CGE) models are often used to analyze the interconnection among 
industries in an economy in order to understand the wider economic impacts from a proposed policy. For 
instance, CGE models have been used to analyze proposed environmental regulations that impose 
higher costs on certain industries and trace the impacts through to other industries and households.12 In 
our case, adoption of ADS is voluntary and would result in cost savings rather than cost increases, but the 
mechanics of the model work in the same way: CGE models allow spillover effects from one industry to 
other sectors of the economy to be identified and evaluated. Outside of Constantini and Sforna who use a 
CGE model to analyze the impact of automation jointly with specification of population ageing and 
environmental tax reform, this research is the only example of using CGE models to analyze the impact of 
automation on the wider economy in terms gross domestic output (GDP), welfare, employment, wages, 
etc.13 

Huang and Kockelman use a multi-region input-output model of the U.S. economy combined with a 
multinomial logit model of mode choice to estimate the impact of autonomous trucking on U.S. trade 
flows. Their research finds that the introduction of a lower cost transport option would increase U.S. 
domestic and international trade flows (as measured by ton-miles) by 3.1 percent.14 

Despite the expected benefits from ADS, much attention has been given to the possibility of widespread 
job loss due to higher-level automation that replaces the human driver from the vehicle. One study finds 
that ADS could eliminate 1.3 to 2.3 million jobs over the next thirty years and raise unemployment rate by 
about 0.1 percentage points and lower labor force participation by about 0.1 percentage points for a 
number of years.15 Stick Shift: Autonomous Vehicles, Driving Jobs, and the Future of Work by the Center 
for Global Policy Solutions, predicts at least 4 million jobs lost under a rapid transition to automated 
vehicles scenario, impacting driving occupations the hardest.7 
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Notably, the studies that identify very large job losses from ADS consider a wide focus on all driving jobs. 
Other studies carefully parse the potential for automation to handle all or most of responsibilities of the 
job, the nature of the driving required by the job, and other market conditions. In their report Truck Driving 
Jobs: Are They Headed for Rapid Elimination, Maury Gittleman and Kristen Monaco identify several 
reasons why other estimates of jobs impacted from automation are likely overstated, including the 
common conflation of truck driver counts resulting from ambiguous occupational classifications used in 
federal statistics, the variety of non-driving tasks for which truck drivers are generally responsible, and a 
regulatory environment rendering certain segments of the trucking industry more difficult to fully automate. 
As such, the authors argue that automation does not “necessarily imply the wholesale elimination of the 
truck driver labor market.” Rather they identify long-haul trucking (particularly the for-hire segment) as the 
driving job most likely to feel the initial impacts of higher-level automation.2  

In Driverless? Autonomous Trucks and the Future of the American Trucker, Steve Viscelli, a sociologist at 
the University of Pennsylvania, also argues that long-haul truck driving jobs (numbering 294,000) are 
most vulnerable to displacement from automation. He argues that in addition to the economic benefits 
mentioned in several prior reports, automating long-haul trucking will also create short-haul, local delivery 
jobs, leading to an uncertain net jobs impact. A key takeaway from this report is that there are only a few 
hundred thousand trucking jobs in danger of elimination initially, not millions.3  

The timeline for technology development, deployment, and acceptance of SAE Level 4 and Level 5 ADS 
is uncertain, as are the resultant economic impacts. Many studies emphasize that the speed of adoption 
will impact the likelihood of significant job displacement, with faster adoption patterns witnessing more 
chance of significant job displacement.15,16 

Just as the emergence of the internet and email has reduced the number of people employed as postal 
workers, certain technological advancements can be linked to lower levels of employment in certain 
occupations.ii However, the progress of technology advancements are not usually linked to observed 
higher levels of unemployment at the macro level. This is because prices and wages adjust to signal 
market changes, and as a consequence, people reskill and adapt to find new employment opportunities 
while the technology increases productivity and increases economic opportunity generally.17 Often it 
enables completely new business models, products, and unanticipated consumer demands making the 
total impact of technology advancement difficult to predict.18 Consider that while the number of postal 
workers has decreased, the number of package delivery workers has increased due to e-commerce.19,20  

An area of anxiety present in the literature is that the driving jobs at risk from automation tend to be better 
paying than other jobs that do not require advanced degrees. There is concern that the new jobs that 
replace the lost driving jobs might be lower paying, or require skills or geographic locations that are not 
good matches for the individuals who are left without a driving job. These studies recommend supporting 
displaced workers financially and providing retraining opportunities.7,15 

                                                      

 

ii The number of postal workers employed by USPS has reduced by 38 percent since its peak in 1999. 
https://about.usps.com/who-we-are/postal-history/employees-since-1926.pdf  

https://about.usps.com/who-we-are/postal-history/employees-since-1926.pdf
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Chapter 3. Data and Methods 

This effort to characterize potential macroeconomic impacts from ADS captures many (but not all) of the 
themes discussed in the literature. The analysis described below focuses on the impacts of automation on 
the long-haul trucking sector in isolation. While an analysis that incorporates automation occurring in 
multiple industries simultaneously might be of interest, we choose to focus on a single industry so that 
impacts can be isolated and examined with clearer focus than an analysis which contains multiple 
countervailing and confounding shocks and impacts.  

This analysis focuses on the higher-level automation (SAE Level 4 and Level 5) that would remove the 
human driver from the vehicle. SAE Level 4 and 5 automation is not currently available, which is to say 
that an environment where a driver can be completely removed from the vehicle in most or all operating 
environments is not yet a technical reality. The limited number of pilot tests for long-haul trucking still use 
a test driver at the wheel and operate only under favorable conditions. The modeling in this analysis uses 
a notional abstraction of the impacts from this higher-level automation that assumes that the removal of 
the human driver would result in labor cost savings, the magnitude of which are estimated based on 
current wages to the current driving workforce. This analysis does not consider any countervailing 
increase in short-haul driving as suggested by Viscelli due lack of information on the magnitude of that 
potential relationship. As a result, this analysis may slightly overstate the productivity improvements of 
automation while at the same time offering a conservative approach when considering the potential for 
lay-offs due to automation.3 Additional productivity impacts to the long-haul trucking sector take the form 
of capital cost savings, fuel cost savings and safety improvements. These positive impacts are balanced 
against higher upfront costs for purchasing the technology. The magnitudes of these impacts are 
estimated based on available information but are still highly uncertain. 

Because the existing literature emphasizes that the timeline for adoption of ADS is uncertain but has a 
substantial influence on the expected economic impacts, this report analyzes three scenarios: slow, 
medium, and fast adoption paths.  

This research is the first of its kind that estimates not only the direct improvements to productivity in the 
trucking industry from automation, but also the indirect impacts to other industries resulting from the 
central role transportation plays in the larger economy. This analysis uses a computable general 
equilibrium (CGE) model of the U.S. economy that has been adapted to give detailed representation of 
transportation-related industries, including trucking. This CGE model will produce expected 
macroeconomic impacts from productivity shocks to the trucking industry resulting from SAE Level 4 and 
Level 5 ADS in the long-haul trucking sector. The impacts the CGE model produces are presented in 
terms of changes in GDP, employment levels, average wages, and consumer welfare. One limitation of 
the model in its present form is that is considers a single uniform labor market and thus the potentially 
differing impacts of automation on low skill jobs versus high skill jobs remains an area for future research.  

Model  
USAGE-Hwy is a dynamic computable general equilibrium (CGE) model of the U.S. economy. In a CGE 
model, the supply and demand for each commodity is determined as the outcome of optimizing behavior 
of economic agents. Industries are assumed to choose labor, capital and land so as to minimize costs 
while operating in a competitive market, subject to technology constraints. Households purchase a 
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particular bundle of goods in accordance with the household’s preferences, relative prices and its amount 
of disposable income. Capital creators assemble, in a cost-minimizing manner, units of industry-specific 
capital for each industry. Investment is allocated across industries to maximize rates of returns to 
investors (households, firms). Governments operate within a fiscal federal framework. The behavior of 
foreign entities is summarized by export demand curves for domestically produced goods and by supply 
curves for international imports. Changes in exports and imports for goods and services impact the 
economy’s trade or current account balance, with offsetting effects on its capital account. In each period 
or year for which the CGE model provides a solution, all economy-wide constraints must be satisfied: for 
each commodity the total quantity demanded by all economic agents will equal the quantity supplied; 
household spending is constrained to equal available income; and the economy-wide demand for factors 
of production (labor, capital, land, natural resources) is constrained by the economy’s capacity to supply 
these factors. In this way, changes to supply or demand for one commodity ripple through the entire 
economy.  

The interconnectedness of industries in CGE models sets them apart from input-output (IO) models that 
are typically used to estimate economic impacts from transportation projects that require substantial 
capital investment. IO models generally assume that there are no supply-side constraints on the 
economy. Labor and capital are assumed to be available with perfect elasticity of supply. There is no 
trade-balance constraint, nor any constraint on government borrowing. Without appropriate constraints, 
IO models often produce results that demonstrate unexpectedly large economic gains derived from what 
is referred to as “manna from heaven.” Additional final demand is accommodated by increased domestic 
output, without any crowding-out of other elements of domestic demand. In the typical IO model, an 
increase in demand associated with a new project generates an increase in domestic output that is bigger 
than the direct increase in demand. It also generates a move towards surplus in the balance of trade; the 
increase in exports being only partially offset by increases in the demand for imports induced by the 
indirect expansion of domestic aggregate demand.  

Realistically, the supply side of the economy is neither completely flexible nor absolutely fixed. Balance of 
payments and public sector borrowing pressures exert some influence on exchange rates and interest 
rates. In addition, price responses to higher activity in one part of the economy tend to induce adjustment 
to demand and supply more generally. In short, expansion in one part of the economy tends to “crowd 
out” activity elsewhere. By requiring that economy-wide constraints are always satisfied, CGE models 
capture these crowding-out effects, while IO models do not, ensuring that CGE models provide a much 
more balanced assessment of the true costs and benefits transportation investments.   

The starting point for USAGE-Hwy was the USAGE model, developed since 2001 by the Centre of Policy 
Studies (now at Victoria University, Melbourne) in collaboration with the U.S. International Trade 
Commission. This analysis uses USAGE-Hwy v1.1, which represents an initial 2016 initial equilibrium, 
based on industry input-output data from the U.S. Bureau of Economic Analysis (BEA).21 USAGE-Hwy 
v1.1 also includes as separate industries In-House Transport for Air, Rail, Water and Trucking which are 
based on the 2016 Transportation Satellite Accounts (TSA) published by Bureau of Transportation 
Statistics (BTS). While USAGE-Hwy shares the features common to all CGE models described earlier, it 
has been tailored to analyze the economy-wide effects of changes in highway-related industries by 
including:  

• modeling of a separate industry for construction of highways and bridges and for street repairs. 
These two industries would typically be aggregated together as part of a single economy-wide 
construction industry 

• representation of a separate private road transport industry that uses cars, household car repairs 
and gasoline as inputs 

• separate commuter transport and vacation transport industries. Vacation transport uses inputs of 
private road transport, air transport, water transport and passenger transport (buses, taxis and 
trains) to provide transport services to facilitate vacation activities. Similarly, commuter transport 
uses these inputs to provide transport services to facilitate travel to work, shopping, etc. The 
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output of vacation transport is sold to the vacation industry whose output is in turn sold to 
households. The output of commuter transport is sold directly to households 

• artificial taxes on sales to commuter transport and vacation transport that cover the cost of driver 
time 

• variables that allow USAGE-Hwy to incorporate other non-traditional inputs related to analysis of 
highway investments such as: 

o fuel use per mile traveled in passenger cars and in trucks;  
o vehicle operating costs per mile traveled in passenger cars and in trucks;  
o safety costs; 
o road maintenance costs; 
o road fatalities; and 
o driving time per mile traveled in passenger cars and trucks. 

Simulations with USAGE models consist of a baseline run representing a business-as-usual evolution of 
the economy; and policy runs which show the evolution of the economy with the addition of policy shocks 
to the baseline. Comparison of a policy run to the baseline shows the effects of that policy. The baseline 
reflects macro and energy forecasts informed by the Annual Energy Outlook published by the Energy 
Information Administration. To analyze the effects of automation in long-haul trucking, we construct 
shocks to reflect the expected impacts of automation in long-haul trucking. These shocks are applied in 
the policy simulations.  

Results from these policy simulations are compared to a common baseline which is consistent with 
annual increases in real GDP of 2.4 percent, reflecting the following baseline behavior in USAGE-Hwy 
macroeconomic aggregates: iii 

• 2.7 percent annual growth in aggregate real consumption 
• 1.7 percent annual growth in aggregate real investment 
• 1.7 percent annual growth in aggregate real government spending 
• 5.2 percent annual growth in aggregate real exports 
• 4.8 percent annual growth in aggregate real imports 

The consumer price index is chosen as the numeraire, and the real exchange rate is set to devalue by -
0.6 percent per year. We assume that the annual increase in the U.S. population is 0.936 percent and 
aggregate labor market behavior is characterized by: 

• 1.085 percent annual increase in hours worked 
• 1.1 percent annual increase in the aggregate real wage 

For this analysis, USAGE-Hwy analyzes the macroeconomic effects of the introduction of automation in 
the long-haul trucking sectors in the United States by introducing productivity shocks to the trucking 

                                                      

 

iii These macroeconomic forecasts are derived from and consistent with assumptions underlying the 
reference case forecast scenario in the 2016 Annual Energy Outlook published by the U.S. Energy 
Information Administration (EIA), available at https://www.eia.gov/outlooks/archive/aeo16/. 

https://gcc01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.eia.gov%2Foutlooks%2Farchive%2Faeo16%2F&data=04%7C01%7CDaniel.Friedman%40dot.gov%7C68c1d017753844ece7c208d8b751d75a%7Cc4cd245b44f04395a1aa3848d258f78b%7C0%7C0%7C637460909436148531%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=UxrD8uxv5l6ziNWkQpYPIA0Hmx5Bf2neWwvPHOF9S5U%3D&reserved=0
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sector from labor costs savings, fuel cost savings, capital cost savings, and safety improvements that are 
expected from automation. The simulations also take into account the upfront cost of acquiring the 
technology. The basis for estimating the magnitudes of those shocks are discussed below. 

Technology Adoption 
We suppose that the first firms in the trucking industry begin adopting automation in long-haul trucking 
starting in Year 1, and that Year 0 is an economy similar to the 2019 economy. This assumption allows us 
to explore the possible economic consequences of automation. The rate at which these firms adopt 
automation will be affected by a number of factors including anticipated labor and fuel cost savings, as 
well as the costs associated with the driving automation systems themselves. To reflect the uncertainty 
around these factors, we consider three separate time paths that dictate the share of the trucking industry 
that begins to adopt automation in long-haul trucking over a period of 30 years. These time paths are 
developed using three components:  

• three technology adoption rates (fast, medium, and slow) for new vehicle purchases,  

• a fleet turnover model which produces estimates of the number of new vehicles that are 
purchased each year, and 

• a maximum adoption ceiling. 

Three technology adoption rates for new vehicle purchases are explored in this analysis to highlight the 
significant level of uncertainty related to how fast SAE Level 4 and 5 ADS would be adopted in the long-
haul trucking sector. These adoption rates for new vehicle purchases are presented in Figure 1 below. 
The fast scenario is intentionally a very optimistic scenario in which 75 percent of new vehicle purchases 
involve ADS in 10 years of the technology becoming available. The medium and slow scenarios assume 
48 percent and 19 percent of trucking firms will have begun adopting 10 years after the technology 
becomes available, respectively. Note, these adoption rates are for new vehicle purchases only, adoption 
for the entire fleet depends on fleet turnover rates which are discussed below. 
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Figure 1: Technology adoption rates for new vehicle purchases 

 

Based on analysis of truck registration data, the typical useful life of a Class 8 tractor is roughly one 
million miles or approximately 11 years, after which the mileage put on older tractors drops off 
dramatically. iv Because tractors in the long-haul segment are used more intensely, the typical useful life is 
likely a bit shorter than the average—approximately nine years. Tractors used in short-haul service may 
last longer, perhaps 15 years, before they reach one million miles.22 Based on this information, we 
assume the existing fleet of long-haul trucks turns over every nine years. On average, in any given year, 
1/9th of the fleet will be replaced with newly purchased vehicles, and those new vehicles will be equipped 
with ADS at the rate of the technology adoption for new vehicles show in Figure 1 above. This implies that 
the share in year t of the fleet of long-haul trucks in the trucking industry that will have been converted to 
accommodate automation will be given by the sum over the period [t-9 to t] of the share of adopting firms 
in Figure 1 multiplied by 1/9. 

The development of those time-paths for adoption includes the expectation that even if the technology 
were widely available, not all human drivers in the long-haul sector could be replaced by automation. 
There are certain categories of shipments such as high-value goods, hazardous materials, or cross-
border movements that would likely retain a human onboard regardless of technological advancement. 
However, the exact proportion of shipments that would always require a human onboard is not clear. For 
expediency, this analysis adopts the results from a study by the McKinsey Global Institute that found that 
                                                      

 

iv Class 8 trucks are those that have a gross vehicle weight rating (GVWR) of 33,000 pounds or more and 
include tractor-trailers.  
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the maximum technical automation potential was 81.4 percent for the occupation “Heavy and Tractor-
Trailer Truck Drivers.”23 Note that the category of “Heavy and Tractor-Trailer Truck Drivers” includes both 
long-haul and short-haul driving but we apply the ceiling to solely long-haul in this analysis. Thus, the fleet 
adoption rates discussed above have a “ceiling” of 81.4 percent as shown in Figure 2 below.  

Figure 2: Share of industry fleet with driverless tech 

 

Labor-Saving Technical Change 
Table 1 below summarizes the two-truck transport industries in USAGE-Hwy. USAGE-Hwy has always 
included NAICS industry 484 “For-hire truck transportation” as a separate activity. Earlier analysis with 
USAGE-Hwy involved the introduction of four in-house transport industries, one of which modeled 
industry 47OT.484 “In-house truck transportation.” Activity in these industries in USAGE-Hwy was 
calibrated to be consistent with total demand for “For-hire truck transportation” in 2016 as reported in the 
BEA and for “In-house truck transportation” in 2016 as reported in the TSA. Also, the labor and capital 
inputs in these sectors were calibrated to match “Compensation of employees” and “Gross operating 
surplus” as reported in the 2016 TSA USE table for NAICS industries 484 and 47OT.484, respectively. 
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Table 1: Truck Transport industries in USAGE-Hwy ($m) 

NAICS 
Industry 

Intermediate 
inputs 

Compensation 
of employees 

Gross 
operating 
surplus 

Taxes Value of 
industry 
output 

Value of 
commodity 

sales 
484 For-Hire 
Truck 
transportation 

156,224 90,051 52,920 8,040 307,235 320,016 

47OT.484 In-
House Truck 
Transportation 

175,978 86,338 50,738 0 313,054 313,054 

 

To model the impact that automation in long-haul trucking would have on labor-saving technological 
change, we need to isolate the component of total “Compensation of employees” listed above in Table 1 
that would be impacted by the introduction of driverless trucks. We also need to estimate the number of 
truck drivers in both the For-Hire sector and the In-House Trucking sector, since we will be interested in 
how automation in long-haul trucking could lead to lay-offs in the trucking industry.  

We begin with data from the BLS Occupational Employment Statistics which reports “total employment” 
and “mean annual wage” in 2017 for NAICS industry 484000 “Truck Transportation” as 1,476,970 and 
$46,340, respectively. Of these employees, 880,710 are employed in the Standard Occupational 
Classification 53-3032 “Heavy and Tractor-Trailer Truck Drivers”, earning a mean annual wage of 
$46,230. As a result, we assume that 59.5 percent of the “Compensation of employees”  in Table 1 
represents compensation to “Heavy and Tractor-Trailer Drivers” in USAGE-Hwy’s trucking industries. 

The total number employed in Standard Occupational Classification 53-3032 “Heavy and Tractor-Trailer 
Truck Drivers” is 1,800,310. Presuming that all Heavy and Tractor-Trailer Drivers not in NAICS industry 
484000 “Truck Transportation” are employed as In-House truck drivers results in an estimate of 919,600 
Heavy Truck and Tractor-Trailer Operators employed in the “In-house Trucking” industry.  

But not all “Heavy and Tractor-Trailer Drivers” would be affected by automation in long-haul trucking, 
since only some of these are long-haul truck drivers. We follow Gittleman and Monaco who employ data 
from the 2002 Vehicle Inventory and Use Survey (VIUS). They report the share of heavy trucks by sector 
and range of operations.2 Since we are interested in long-haul trucking, we consider only those heavy 
trucks whose range of operations was more than 200 miles. As a result, we assume that of all “Heavy and 
Tractor Trailer Drivers” employed in the for-hire trucking and private trucking sectors, 51.52 percent and 
8.13 percent were long-haul truck drivers, respectively, and that overall, 29.36 percent of all “Heavy and 
Tractor Trailer Drivers” are employed in the long-haul sector.  
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We conclude that in 2017, there were 453,773 and 74,718 Long Distance Tractor-trailer Drivers in the 
“Trucking Services” and “In-house Trucking” sectors, respectively. These are the number of driving jobs at 
risk of elimination due to adoption of automation in long-haul trucking.v  

Similar to the upper–bound, on-fleet adoption, we assume 81.4 percent will be the maximum of the value 
of compensation of employees attributed to long-haul truck drivers that could be saved upon adoption of 
automation in long-haul trucking due to the understanding that not all long-haul trucking would be 
automated. 

Figure 3 and Figure 4plot the shocks to labor-saving technical change under the different adoption paths 
in USAGE-Hwy’s two trucking industries: For-Hire and In-House. Note that labor-saving technical change 
is measured here as the change in the amount of labor required to produce one unit of output holding 
other inputs constant. Thus, the productivity shocks are negative because less labor is required to 
produce the same level of output.  

Figure 3: Labor saving technical change in For-Hire (relative to baseline) 

 

 

                                                      

 

v This analysis considers only the impacts on labor costs associated with employees. Significant numbers 
of self-employed drivers (known as owner-operators) also operate in the trucking industry. But due to the 
difficulty in identifying these entities in the underlying Industry Input-Output data from the BEA, this 
analysis implicitly assumes self-employed drivers are not impacted by automation. 
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Figure 4: Labor saving technical change in In-House (relative to baseline) 

 

The two figures have the same shape, since they both reflect the same adoption paths in Figure 2. But in 
the In-House Trucking industry (Figure 4), the shocks to labor productivity are much smaller than those in 
the For-Hire Trucking industry (Figure 3). This reflects our observation that a much smaller share of truck 
drivers in In-House trucking (8.13 percent) are long-haul truck drivers than in the for-hire trucking industry 
(51.52 percent). For example, under the fast scenario, ten years from adoption, just over 41 percent of 
the industry fleet will be converted to accommodate automation in long-haul trucking. Ten years after 
adoption, the labor saving technical change shock in For-Hire and In-House is -12.53 percent and -1.98 
percent, respectively. As noted above, the shock is negative, reflecting the fact that less labor is required 
to produce the same level of output, given the level of usage of other inputs. In the medium scenario, only 
25 percent of the industry fleet will be converted ten years after adoption, so the labor saving technical 
change shock in the medium scenario ten years after adoption in For-Hire and In-House is -7.66 percent 
and -1.21 percent, respectively. 

Cost of Adopting Automation 
We estimate the cost of adopting automation in long-haul trucking by estimating the cost of replacing the 
current fleet of long-haul trucks with one where all trucks are fitted with the technology to allow for 
automated operation.  
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Chottani et al. report that trucks outfitted with lidar, sensors, and other technology to allow the vehicle to 
operate without human intervention cost can cost between $30,000 and $100,000.vi,24 Baseline 
investment expenditures in the For-Hire and In-House industries in USAGE-Hwy reflect the expenditures 
needed to produce new capital (trucks) as those in the current fleet need to be replaced. To model the 
switch to trucks capable of automated operation, we assume that each new truck that is replaced will 
require an extra investment expenditure of $100,000 per truck. We assume that this per-truck cost for 
adopting automation technology falls over time with the inverse of the technology adoption rates (1 minus 
the adoption rate) in Figure 2, to a minimum of 50 percent. This reflects the idea that early adopters of 
new technology face higher adoption costs than late adopters, but places a lower bound on the cost that 
late adopters must incur.  

There are of approximately 2.0 million tractor trailers in the U.S. fleet serving both short-haul and long-
haul sectors.23 This figure is consistent with our earlier discussion that the typical useful life of a long-haul 
truck is about nine years and figures reported by FleetOwner that approximately 200,000 new Class 8 
(truck tractors) are sold each year.vii  

Recall that overall (across both in-house and for-hire industries), 29.36 percent of all “Heavy and Tractor 
Trailer Drivers” are employed in the long-haul sector. We use this same share to estimate that the fleet of 
long-haul tractor trailers in the U.S. in 2016 was 587,111 trucks. Over the simulation period, we assume 
that the size of the fleet of long-haul trucks grows, following the expected growth in truck vehicle miles 
traveled over the same period as used the forthcoming 24th Edition of the FHWA Conditions and 
Performance (C&P) Report under the “sustain current spending scenario” – approximately 1.8% 
annually.viii  

To calculate the shock to investment in USAGE-Hwy that reflects the cost of automation, we multiply the 
size of the fleet of long-haul tractor trailers by the extra investment expenditure per truck to allow for 
automated operation ($100,000), discounted by 1 minus the technology adoption rate in Figure 2, by the 
share of the industry fleet being converted to driverless technology in that year from Figure 2, as a share 
of baseline investment in the For-Hire and In-House industries. These shocks are reported in Figure 5 
and Figure 6, reflecting the extra investment expenditure in these two industries at baseline prices. The 
shocks reflect two effects: the increased capital requirement per unit of output in the industry and the 
increased output (number of trucks) in the industry. Under the fast adoption scenario, this shock is highest 
in Year 7 when 8.62 percent of the fleet is converted to allow for automated operation, bringing the total 
share of the fleet converted by Year 7 to 30.51 percent (see Figure 2). By Year 7, the size of the long-haul 
trucking fleet has grown to 718,710 tractor-trailers. The share of this fleet in the For-Hire and In-House 
sectors is 86.4 percent and 13.6 percent, respectively.  

                                                      

 

vi LIDAR stands for Light Detection and Ranging, a remote sensing method that uses light in the form of a 
pulsed laser to measure ranges (variable distances) to the Earth. See 
https://oceanservice.noaa.gov/facts/lidar.html.  

vii Data from the American Trucking Associations “Freight Transportation Forecast 2017-2028”, cited in 
https://www.fleetowner.com/truck-stats/trucking-by-the-numbers/media-gallery/21702887/trucking-by-the-
numbers-2018-the-equipment-fleets-use/slideshow?slide=6.  

viii We are assuming that the existing fleet is fully utilized, so to achieve a 5 percent increase in Truck 
vehicle miles traveled, it is necessary to have 5 percent more trucks and 5 percent more drivers.  

https://oceanservice.noaa.gov/facts/remotesensing.html
https://oceanservice.noaa.gov/facts/lidar.html
https://www.fleetowner.com/truck-stats/trucking-by-the-numbers/media-gallery/21702887/trucking-by-the-numbers-2018-the-equipment-fleets-use/slideshow?slide=6
https://www.fleetowner.com/truck-stats/trucking-by-the-numbers/media-gallery/21702887/trucking-by-the-numbers-2018-the-equipment-fleets-use/slideshow?slide=6
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Figure 5: Cost of adopting automation in For-Hire (% change relative to baseline) 

 

Figure 6: Cost of adopting automation in In-House (% relative to baseline) 
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After Year 9, the first trucks that were upgraded in Year 1 will be 9 years old and will need to be replaced. 
This explains why the curves in Figure 5 and Figure 6 never return to baseline. For example, under the 
fast adoption scenario, the baseline growth in vehicle miles traveled suggests that the number of long-
haul trucks will have increased to just over one million by Year 30. In the policy scenario, these will now 
all be equipped with automation technology that costs $50,000 per truck. With baseline investment in the 
For-Hire industry projected to reach $203 billion by Year 30, the cost of adopting automation in the For-
Hire sector reaches almost 2.5 percent above baseline by Year 30.  

Again, Figure 5 and Figure 6 have the same shape, since they both reflect the same adoption paths in 
Figure 2, and they both presume the same replacement cost necessary for automating long-haul trucks. 
But while baseline investment in the For-Hire and In-House industries in USAGE-Hwy is quite similar (i.e., 
the denominator in the shocks in Figure 5 and Figure 6), the share of the "Heavy Truck and Tractor-Trailer 
Operators" that are "Long Distance Tractor-trailer Drivers" in the In-House industry (8.13 percent) was 
much smaller than that in the For-Hire industry (51.52 percent). This accounts for most of the difference 
between the scale on Figure 5 (where the largest investment shock in For-Hire under the fast adoption 
scenario in Year 7 is 3.16 percent) and the scale on Figure 6 (where the largest investment shock in In-
House under the fast adoption scenario in Year 7 is 0.51 percent).  

Fuel Cost Savings 
There is evidence that automation of long-haul trucking could lead to reductions in fuel costs. Driving 
automation could decrease fuel costs by optimizing throttle and brake controls to minimize fuel burn. 
Other types of automation have also been shown to lead to fuel savings. For example, the practice of 
“truck platooning” involves the implementation of systems that allow communication and close following 
between multiple trucks traveling close together. When SAE Level 1 platooning was tested, Shladover et 
al. found that a three-truck platoon traveling at 65 mph could save between 5 and 6 percent of its fuel.25 
Fuel savings can also be experienced due to maintaining lower speeds than human drivers typically 
choose: a truck traveling at 65 mph instead of 75 mph will experience a 27 percent improvement in fuel 
use.26 The United States is currently pursuing several policy options to improve fuel economy in large 
trucks (for example, speed regulators and improved fuel economy standards) so it is difficult to estimate 
the incremental impact that automation will have. For the purposes of this analysis, we adopt a central 
case value for the reduction in fuel use by long-haul trucks due to automation of 5.22 percent. This value 
is derived from the estimated fuel savings of 5 to 5.5 percent expected from mandated speed controls.27 It 
is also consistent with the fuel savings due to truck platooning cited above in Shladover et al. and the 15 
percent realized fuel savings claimed by TuSimple.25,28 

Figure 7 and Figure 8 present the percentage reductions in fuel use per unit of output that are anticipated 
upon adoption of automation in long-haul trucking. Given the evidence summarized above, we assume 
that fuel costs fall by 5.22 percent for those firms that adopt automation in long-haul trucking. As a result, 
the shocks in the For-Hire and In-House industries in USAGE-Hwy reflect the adoption rates in Figure 2 
and the fact that a much smaller share of drivers in private or in-house trucking engage in long-haul 
trucking than those in for-hire trucking. For example, under the fast adoption scenario, after Year 20 when 
maximum percent of the fleet has been converted to accommodate automation in long-haul trucking, the 
fuel-saving shock is -2.18 percent in the For-Hire industry and -0.34 percent in the In-House industry, 
reflecting the share of Heavy Truck and Tractor-Trailer Operators that are Long Distance Tractor-trailer 
Drivers and the maximum fleet adoption rate 81.4 percent. As was the case for the labor-saving technical 
change shocks, these shock are negative, reflecting the fact that less fuel is required to produce the same 
level of output, given the level of usage of other inputs. 

 



Chapter 3. Data and Methods  

 
U.S. Department of Transportation 

Office of the Assistant Secretary for Research and Technology 
Intelligent Transportation Systems Joint Program Office 

 

Macroeconomic Impacts of Automated Vehicles | 19 

Figure 7: Fuel saving in For-Hire (% relative to baseline) 

 

Figure 8: Fuel saving in In-House (% relative to baseline) 
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Capital Cost Savings 
Automation is expected to lead to capital cost savings due to improved fleet utilization. Automation could 
allow trucks to potentially run nearly nonstop, without the need for human drivers to rest, which would 
reduce the capital costs associated with the trucks themselves. Of course, while a truck could be run 
more hours per day, we must also account for the fact that the truck will wear out sooner. A McKinsey 
report estimates that SAE Level 4 and 5 automation could reduce the total cost of ownership (TCO) by 45 
percent.29  

Figure 9 and Figure 10 present the anticipated improvements in the productivity of capital in trucking 
industries per unit of output upon adoption of automation in long-haul trucking. As was the case for 
previous shocks, those in the For-Hire and In-House industries in USAGE-Hwy reflect the shares of the 
industry fleet that have adopted automation in Figure 2 and the fact that a much smaller share of  in-
house trucking employees engage in long-haul trucking that those in for-hire trucking. Once the entire 
fleet has adopted the technology needed for driverless trucks (after Year 20 in the fast scenario), the 
capital improvement is reflected in a shock of -18.8 percent and -3.0 percent in For-Hire and In-House, 
respectively, reflecting the share of Heavy Truck and Tractor-Trailer Operators that are Long Distance 
Tractor-trailer Drivers and the maximum fleet adoption rate of 81.4 percent. Like the labor-saving 
technical change shocks, these capital-saving technical change shocks reflect the fact that upon adoption 
of automation in long-haul trucking, less capital is required to produce the same level of output, given the 
level of usage of other inputs, so these shocks are negative.  

Figure 9: Capital-saving technical change in For-Hire (% relative to baseline) 
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Figure 10: Capital-saving technical change in In-House (% relative to baseline) 

 

Fatalities and Safety Costs 
Many studies are optimistic about the potential for automation to improve highway safety. Therefore this 
study incorporates an estimate of safety benefits as an exploratory premise. We focus on the set of 
currently observed crashes that involve only a single large truck (as opposed to multi-vehicle crashes) 
presuming that these crashes are likely to be the fault of the truck or truck driver. Since some multi-
vehicle crashes will also be the fault of the truck driver (the others being the fault of the other vehicle or its 
driver), our estimates represent a lower-bound on the fatalities and safety costs impacted by the adoption 
of automation in long-haul trucking. In 2017, there were 4,237 fatal crashes involving large trucks. Of 
these, 2,910 involved combination trucks, the type used in long-haul trucking. Crashes involving just a 
single large truck killed 885 people (often the driver of the truck but sometimes pedestrians and bicyclists) 
and injured approximately 17,000 additional people.30 Of these single truck fatalities, we estimate that 
29.36 percent involved long-haul trucks, matching the overall percent of truck drivers employed in the 
long-haul sector. Craft found that for 87 percent of large truck crashes, the critical factor was related to 
the driver (lack of sleep, inattentiveness, speeding or aggressive driving, etc.).31 Based on this 
information, and assuming that automation could eliminate all of the single-vehicle crashes where the 
critical factor is related to driver performance, we estimate that approximately 155 fatalities involving large 
trucks in 2017 would be avoided if the entire long-haul fleet was automated. To derive an estimate of 
safety costs that could be saved due to automation, we use the observation that the cost per injury crash 
involving a truck tractor with one trailer in 2005 dollars was $22,934.32 We update these 2005 costs to 
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2017 using a factor of 1.43 based on the U.S. health care inflation rate.ix As a result, we assume that total 
automation of the long-haul trucking sector would save $97.8 million in annual medical costs from injury-
only crashes (measured in 2017 dollars). Note that this is an optimistic assumption that does not account 
for the possibility that automation might introduce new types of crashes. Therefore on net, not all crashes 
would be eliminated. On the other hand, one could reasonably expect that some portion of multi-vehicle 
crashes might also be avoided due to automation, and this source of possible safety benefits is not 
included in this analysis. While the estimated pool of possible safety benefits is highly uncertain, the 
impact of this category of benefits is small, accounting for roughly 5 percent of welfare impacts.  

The final shocks reflect the assumption that the adoption of automation in long-haul trucking would 
eliminate crashes that involve a single large truck where the crash is due to at least one truck-driver-
related factor such as non-performance, inattention, speeding or overcompensation while driving. We 
assume that if these crashes were eliminated, any fatalities or injuries that would have resulted from 
these crashes would also be eliminated. Note that although these avoided crashes are credited to the 
SAE Level 4 and Level 5 automation that is the focus of this report, SAE Level 1 and Level 2 
technologies, such as advanced driver-assistance systems (ADAS), may also prevent some subset of 
these crashes as well. We begin with our estimates that there were 155 fatalities and $97.8 million in 
costs associated with injuries that could have been avoided in 2017 had automation in long-haul trucking 
been adopted. We suppose that the number of crashes involving long-haul trucks over the simulation 
period would follow the increase in truck vehicle miles traveled over the same period. Together with the 
shares of the industry fleet that has adopted automation in Figure 2, these statistics suggest a reduction 
in fatalities per unit of output under either fast, medium or slow adoption of automation in long-haul 
trucking as presented in Figure 11. As in previous work with USAGE-Hwy, each extra fatality is valued at 
$9.6 million in 2016 dollars, following USDOT guidance on Value of Statistical Life.  

                                                      

 

ix This U.S. health care inflation rate is compounded over 2005-2017 using data from 
https://ycharts.com/indicators/us_health_care_inflation_rate.  

https://ycharts.com/indicators/us_health_care_inflation_rate
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Figure 11: Change in fatalities (# relative to baseline) 

 

The reduction in safety costs (in $millions) per unit of output due to the reduction in truck crashes and 
associated injuries upon adoption of automation in long-haul trucking as presented in Figure 12 under 
either fast, medium or slow adoption rates. The shape of these curves is similar to those in Figure 11 
since both are based upon the same adoption rates in Figure 2.x In simulations, we introduced this 
information as reduced purchases of medical services by the household sector. Since we excluded 
medical expenditures when measuring welfare-relevant household consumption, reduced medical 
expenditures imposed on households are welfare-improving: they improve the ability of households to 
consume welfare-enhancing products. Both fatalities and safety-cost shocks are negative, reflecting the 
fact that fatalities and safety costs per unit of output are expected to fall upon adoption of automation in 
long-haul trucking.  

                                                      

 

x Figure 13 shows the reduction in safety costs for the medium and slow scenarios exceeding the 
reduction in the fast scenario towards the end of the analysis period. This happens because under 
medium and slow adoption, fleet conversion rates have only reached 77 percent and 72 percent 
compared to a maximum of 81.4 percent in the fast scenario. As time goes on, the value of the safety cost 
for a single crash increases, so saving that extra crash later under medium and slow scenarios results in 
slightly larger savings.  
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Figure 12: Reduction in safety costs ($m relative to baseline) 
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Chapter 4. Results 

To begin our analysis of the impact of these shocks that represent the adoption of automation in long-haul 
trucking, we look at the direct consequences of the increase in investment spending in the For-Hire and 
In-House Trucking industries. Over the simulation period, under the fast adoption scenario, replacing the 
long-haul trucking fleet with vehicles that are equipped for automated operation results in an extra $111 
billion of aggregate investment spending in the U.S. economy relative to baseline. As illustrated in Figure 
13, this increased investment translates into an increase in aggregate capital that reaches almost 0.4 
percent above baseline by Year 30. Under the medium and slow adoption scenarios, this increase in 
capital reaches 0.35 and 0.30 percent above baseline by Year 30 (under the medium and slow scenarios 
the fleet does not reach the maximum adoption ceiling by Year 30).  

Figure 13: Aggregate capital (% deviations from baseline) 
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Figure 14: Aggregate employment (% deviations from baseline) 
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Figure 15: Real wage (% deviations from baseline) 
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Figure 16: Real GDP (% deviations from baseline) 

 

Figure 17: Welfare (% deviations from baseline) 
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By Year 30, under the fast adoption scenario, GDP reaches almost 0.34 percent above baseline, 
equivalent to just over $68 billion relative to 2019 GDP. By Year 30, labor has almost returned to baseline, 
so the contribution of labor to this real GDP gain is negligible. But at 0.38 percent above baseline, capital 
growth contributes just one-third of overall GDP gain (just over 0.12 percent points of the total 0.38 
percentage point gain in real GDP). The largest share of real GDP gain is accounted for by technical 
change. Labor-saving, capital-saving, and fuel-saving technical change associated with the adoption of 
automation in long-haul trucking contribute over half of overall GDP gain (0.20 percentage points of the 
total 0.38 percentage point gain in real GDP).xi The dynamics of the modeled changes in rates of 
technical change are discussed in Chapter 3. The small remainder is accounted for by the impact of 
changes in revenue from indirect taxes. By comparison, the impact on real GDP of the medium and slow 
adoption scenarios mimics the impact on capital, with real GDP rising more slowly but steadily throughout 
the simulation period under the slow adoption scenario.  

Figure 17 reports the effects of automation in long-haul trucking on aggregate welfare. This measure of 
welfare incorporates the impact of automation on private consumption net of medical expenses and road 
fatalities. As noted in the discussion around Figure 11 and Figure 12, our measure of welfare 
accommodates these impacts since medical expenditures are excluded when measuring welfare-relevant 
consumption, and extra fatalities are deducted from welfare. The adoption of automation in long-haul 
trucking leads to an increase in aggregate welfare relative to baseline that is initially smaller than the 
increase in real GDP, but ultimately ends up larger than the increase in real GDP. For example, in the fast 
adoption scenario, the welfare gains are smaller than the real GDP gains until about Year 17. This occurs 
because, over that part of the simulation period, the higher investment expenditures needed to convert to 
driverless trucks cause the real GDP gains to be higher than the welfare gains. After Year 17 the welfare 
gains are slightly greater than the real GDP gains because welfare incorporates the positive impact that 
automation has on reduced medical costs and fatalities, while these measures are not part of GDP. The 
increase in welfare reaches just over 0.36 percent by Year 30 under the fast adoption scenario, equivalent 
to about $40 billion in 2019 prices. The average yearly welfare increase is just over 0.20 percent, 
equivalent to about $22.8 billion in 2019 prices or $69 per person. Under the slow scenario, the 
corresponding figures are 0.28 percent by the end of the simulation period, equivalent to about $31 billion 
in 2019 prices. The average yearly welfare increase is 0.10 percent, equivalent to about $11.4 billion in 
2019 prices or $35 per person. Thus, the fast scenario produces the largest increase in total welfare over 
the analysis period.  

Next, we consider the impact of automation in long-haul trucking on some of the industries that are most 
impacted by these shocks. We begin with the For-Hire Trucking Services and In-House Trucking sectors. 
The For-Hire Trucking Services industry sees larger technological improvements due to the adoption of 
automation than the In-house Trucking sector, since there are many more long-haul truck drivers in the 
For-Hire Trucking Services industry. As a result, Figure 19 shows that the adoption of automation in long-
haul trucking leads to an increase in output of the For-Hire Trucking Services sector that reaches about 4 

                                                      

 

xi By Year 30, labor and capital in the For-Hire sectors each account for about 0.56 and 0.29 percent of 
GDP, while in In-House Trucking, they account for 0.53 and 0.31 percent of GDP, respectively. From 
Figure 3 and Figure 4, as well as Figure 9 and Figure 10, labor- and capital-saving technical change is 25 
percent and 19 percent in the For-Hire sector, and 4 and 3 percent in the In-House Trucking sector, 
respectively. The overall contribution of technical change to real GDP is 0.20 percent.  
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percent above baseline by Year 30. Figure 19 shows that the increase in output for the In-House Trucking 
sector only reaches 0.5 percent above baseline by Year 30.  

Figure 18: For-Hire Trucking Services Output (% deviations from baseline) 

 

Figure 19: In-House Trucking Output (% deviations from baseline) 
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Figure 20: For-Hire Trucking Services Employment (% deviations from baseline) 

 

Figure 21: In-House Trucking Employment (% deviations from baseline)  
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Along with the increase in output in the For-Hire and In-House sectors, Figure 20 and Figure 21 also 
report a large decrease in employment in these industries. These are consistent with the labor-saving 
technical change shocks reported in Figure 3 and Figure 4. As firms in these sectors adopt automation 
technologies, by Year 30, employment in the For-Hire and In-House sectors falls by 20-25 percent and 4-
5 percent, respectively. However, recall that overall employment in the economy rises slightly. These 
sector-specific decreases in employment are not accompanied by decreases in overall employment as 
the productivity improvements cause employment growth in other sectors. 

Finally, we consider the impact of the adoption of automation in long-haul trucking on job security of the 
drivers of long-haul trucks. There is concern that the adoption of automation in the long-haul trucking 
industry will lead to large lay-offs of drivers of long-haul trucks. Figure 22 below reports the new hiring of 
drivers of long-haul trucks in the baseline scenario, and under the fast, medium and slow adoption 
scenarios. New hiring is defined as the difference between employment in year t and employment in the 
previous year, plus employment in the previous year multiplied by the turnover rate: 

 

That is, new hiring is the difference between demand for long-haul truck drivers from one year to the next, 
plus the replacement of drivers in the previous year who leave the occupation either through retirement or 
job change. Groshen et al. cite BLS occupational turnover projections to argue for use of an annual 
occupational turnover rate of 10.5 percent for long-haul truck drivers.15  

Figure 22: Net hiring of Long-haul Truckers 
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In Year 0, the USAGE-Hwy baseline suggests employment of 559,027 long-haul truck drivers (479,993 in 
For-Hire and 79,035 in In-House Trucking),xii increasing to 569,370 in Year 1. As a result, Figure 22 
reports baseline new hiring of long-haul truck drivers in Year 1 of 69,041, rising to over 110,000 by Year 
30.  

The impact of the adoption of automation on the hiring of long-haul truckers is illustrated in Figure 22. 
There are no lay-offs under the medium and slow adoption scenarios, since net hiring is always positive. 
But under the fast adoption scenario, after Year 9 (by which point just over 50 percent of the fleet will 
have been converted to accommodate automation), net hiring of long-haul truckers turns negative for five 
years, implying that there will be lay-offs of long-haul truckers. The number of lay-offs reaches a 
maximum of about 11,000 in Year 11, roughly 1.7 percent of baseline employment of long-haul truckers in 
Year 11. But by the time the whole fleet has been converted to accommodate automation, net hiring 
ultimately trends to approximately +20,000. This long-term net hiring by Year 30 reflects our assumption 
that the maximum technology adoption in the long-haul trucking industry is 81.4 percent, so of the 
110,000 net hires of long-haul truckers under the baseline by Year 30, around 20,000 are still required to 
manage shipments such as high-value goods, hazardous materials, or cross-border movements. It is also 
important to recall that long-haul truckers represent only a fraction of the “Heavy and Tractor-Trailer 
Drivers” employed in BLS Occupation 53-3032. We noted earlier that the BLS reported that there were 
1,800,310 “Heavy and Tractor-Trailer Drivers” in 2017, of whom 453,773 and 74,718 were Long Distance 
Tractor-trailer Drivers in the For-Hire and In-House Trucking sectors, respectively. Using the same annual 
occupational turnover rate of 10.5 percent for all truck drivers, this suggests an annual turnover of 
133,541 short-haul truck drivers in 2017. This turnover is an order of magnitude greater than the largest 
lay-offs of long-haul truck drivers. As a result, we conclude that long-haul truck drivers should be able to 
find employment as short-haul truck drivers, so properly managed, the issue of lay-offs should not be a 
significant concern when considering the adoption of automation in long-haul trucking.  

Before concluding, we consider a simple sensitivity test by re-running all simulations against a baseline 
where the assumed annual growth rate in real GDP is halved from 2.4 percent to 1.2 percent. This implies 
that the investment shocks need to be re-calibrated against a baseline where the growth in investment in 
the For-Hire and In-House Trucking sectors is lower. At the same time, we halve the growth rate in truck 
vehicle miles traveled reported in the forthcoming 24th Edition of the FHWA Conditions and Performance 
(C&P) Report, and re-calibrate baseline employment in the For-Hire and In-House Trucking sectors 
accordingly. Since truck vehicle miles traveled is growing more slowly, associated fatalities and medical 
costs will also grow more slowly; shocks to fatalities and medical costs are re-calibrated accordingly. All 
other shocks remain the same. For the purposes of this sensitivity analysis, we use the fast adoption 
scenario to contrast the “central case” results against the “sensitivity” results where the annual growth 
rate in real GDP is halved.  

In the “central case” scenario, baseline employment in the For-Hire and In-House Trucking sectors was 
assumed to follow the change in truck vehicle miles traveled as reported in the forthcoming 24th Edition of 
the FHWA Conditions and Performance (C&P) Report, an annual growth rate of about 1.8 per cent. In the 
“sensitivity” scenario, this growth rate is halved. As a result, Figure 23 shows that net hiring of long-haul 
truck drivers in the baseline is considerably lower under the “sensitivity” scenario compared to the “central 

                                                      

 

xii Using BLS Occupational Employment Statistics and evidence from Gittleman and Monaco, we argued 
earlier that there were 453,773 and 74,718 Long Distance Tractor-trailer Drivers in the “Trucking 
Services” and “In-house Trucking” sectors, respectively in 2017 (See Endnote 4).  
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case” scenario. By Year 30, net hiring of long-haul truck drivers is just under 79,000 under the “sensitivity” 
scenario, compared to just under 111,000 under the “central case” scenario. 

Figure 23: Net hiring of Long-haul Truckers (#) 

 

As a result, after the adoption of automation under the fast scenario, net hiring of long-haul truck drivers is 
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Since baseline hiring is weaker, there is a slight increase in the largest number of lay-offs under the 
“sensitivity” scenario, where net hiring falls to about -12,300 in Year 11, compared to about -11,300 under 
the “central case” scenario. But these differences are relatively small, and as we argued earlier under the 
“central case” scenario, any laid-off long-haul truck drivers should always be able to find employment as 
short-haul truck drivers. This result echoes the available literature that finds that the speed of technology 
adoption would impact the expect job displacement in the trucking sector.15,16  
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Chapter 5. Conclusions 

Our model indicates that the adoption of driving automation will bring direct productivity enhancements to 
the long-haul trucking sector and (due to transportation’s central role in the economy) produce secondary 
productivity enhancements to the larger macroeconomy. These productivity enhancements will increase 
GDP, capital, employment, wages, and welfare that can be monetized into billions of dollars. Additionally, 
our model concluded that these economic benefits can likely be reaped without mass lay-offs of long-haul 
truck drivers. Assuming the occupational turnover remains near today’s levels, employment levels in the 
long-haul trucking sector will necessarily fall due to automation but will not force lay-offs in the slow and 
medium speed adoption scenarios. Only under the fast adoption scenario are lay-offs observed, but they 
are at most 1.7 percent of the long-haul workforce in a single year and the layoffs only occur during a five-
year period. As a result, we conclude that long-haul truck drivers should be able to find employment as 
short-haul truck drivers, so the issue of lay-offs should not be a significant concern when considering the 
adoption of automation in long-haul trucking.  

Specifically, this analysis finds that SAE Level 4 and Level 5 automation of the long-haul trucking industry 
would be accompanied by welfare increases ranging from $35 per person (for the whole population) on 
average over the 30-year period under the slow scenario to $69 per person under the fast scenario. 
Workers would see annual earnings rise by $203 per worker per year under the slow scenario and $267 
per worker per year under the fast scenario.  
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